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Machine Learning applications can facilitate

in all phases of Laboratory Medicine    

ordering

collection

transportanalysis

reporting

interpretation
- Electronic Health 

Records
- patient
- Clinical decision 

support systems
- research
- …

- Clinical information
- Results from other 

laboratories

Bietenbeck, A., & Streichert, T. (2021). 
Preparing laboratories for interconnected 
health care. Diagnostics, 11(8), 1487.
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Overview
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Training, testing, external validation
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Scenario 1: ML for classification of Omics data

In the manuscript:

• 30.000 features from novel Omics method
• 60 samples (30 healthy, 30 ill) 
• Principal component analysis 
• Support vector machine for classification
• Leave-one-out cross validation
• No external validation
• Code available
• AUC: .69

Insufficient cases for number 
of features

Weak validation
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Scenario 2: ML for classification of Omics data

What might have happened…

• Nobody understands the data so let’s do machine learning
• First approach (e.g. removal of correlated features, random forest): AUC .56
• Next approaches: try out other pre-processing pipelines, algorithms… (> 100 

permutations …)
• Report only the best result
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When not to use machine learning

1. New cases not similar enough to any of the training examples – failure to 
generalize

2. Similar inputs associated with different outputs
3. Defined outcomes are controversial because of an ill-defined gold standard
4. Insufficient infrastructure or resources (data scientists) for machine learning
5. Unreliable outcome labelling, lack of in-house expertise to provide training 

diagnoses.
6. No clear strategy or understanding of the operational context
7. Traditional rule-based software methods are equivalent/better (simple or well-

characterized problem)
8. Insufficient data (quantity or quality)
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Scenario 2: ML for anaemia classification

Features:

MCV

HB

Ferritin

Reticulocytes

Haptoglobin

“deep neural 
network”

Outcome:

• Iron deficiency anemia

• Renal anemia

• Hemolytic anemia

• Other forms of anemia



9
Simple rules for anaemia classification

Rifai, Nader. Tietz textbook of clinical chemistry and molecular 
diagnostics-e-book. Elsevier Health Sciences, 2017.
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When not to use machine learning

1. New cases not similar enough to any of the training examples – failure to 
generalize

2. Similar inputs associated with different outputs
3. Defined outcomes are controversial because of an ill-defined gold standard
4. Insufficient infrastructure or resources (data scientists) for machine learning
5. Unreliable outcome labelling, lack of in-house expertise to provide training 

diagnoses.
6. No clear strategy or understanding of the operational context
7. Traditional rule-based software methods are equivalent/better (simple or well-

characterized problem)
8. Insufficient data (quantity or quality)
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Model examination with interpretability methods

Feature importance analysis

Lundberg, Scott M., et al. "Explainable machine-learning predictions for 
the prevention of hypoxaemia during surgery." Nature biomedical 
engineering 2.10 (2018): 749-760.
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Reliable ML models with reproducible results

Recommendation 13: Interpret the results and 
performance of the selected model using suitable 
global and/or local interpretability methods.  Address 
performance and potential harms in relevant subgroups 
and clinical scenarios. 
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Reliable ML models with reproducible results
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Clinical settings are dynamic environments 

Duckworth, Christopher, et al. "Using explainable 
machine learning to characterise data drift and detect 
emergent health risks for emergency department 
admissions during COVID-19." Scientific reports 11.1 
(2021): 23017.
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Implementation adjusted to clinical settings

Soltan, Andrew AS, et al. The Lancet 
Digital Health 2022
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Can you buy a ML model for Laboratory Medicine?
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Generalizability of a Machine Learning Models is lacking

“This difference could be partially attributed to the fact that both WUSM and MDA laboratories 
use the same analyzers to conduct routine chemistry tests […]”

Yang, He S., et al. "Generalizability of a Machine Learning Model for 
Improving Utilization of Parathyroid Hormone-Related Peptide Testing across 
Multiple Clinical Centers." Clinical chemistry 69.11 (2023): 1260-1269.
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Traceable and stable measurements 

prevent model deterioration

Karger, Amy B., et al. "Long-term longitudinal stability of kidney filtration 
marker measurements: Implications for epidemiological studies and 
clinical care." Clinical chemistry 67.2 (2021): 425-433.
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Take home lessons

• Keep it simple: Only use Machine Learning when you have to.

• Beware of data leakage!

• Machine Learning is no “magic bullet”:  Insufficient data (quantity 
and quality) cannot lead to convincing results.

• Play to your strengths: Use interpretability methods to evaluate 
machine learning models.

• Only stable, traceable measurements can guarantee stable, 
transferable ML models.
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Resources

• https://area9lyceum.com/laboratorymedicine/

• IFCC Webinar part 2

• lab@bietenbeck.net
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