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Training, testing, external validation
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Scenario 1: ML for classification of Omics data

In the manuscript:

e 30.000 features from novel Omics method
60 samples (30 healthy, 30ill)

* Principal component analysis

e Support vector machine for classification

e Leave-one-out cross validation

* No external validation

 Code available

* AUC: .69

Insufficient cases for number
of features

P Weak validation



Scenario 2: ML for classification of Omics data

What might have happened...

* Nobody understands the data so let’s do machine learning

First approach (e.g. removal of correlated features, random forest): AUC .56

 Next approaches: try out other pre-processing pipelines, algorithms... (> 100
permutations ...)

 Report only the best result




When not to use machine learning

1. New cases not similar enough to any of the training examples — failure to
generalize

. Similar inputs associated with different outputs

. Defined outcomes are controversial because of an ill-defined gold standard

. Insufficient infrastructure or resources (data scientists) for machine learning

. Unreliable outcome labelling, lack of in-house expertise to provide training
diagnoses.

. No clear strategy or understanding of the operational context

. Traditional rule-based software methods are equivalent/better (simple or well-

characterized problem)
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Features:
MCV

HB

Ferritin
Reticulocytes
Haptoglobin

Scenario 2: ML for anaemia classification

“deep neural
network”

Outcome:

* Iron deficiency anemia
* Renal anemia

* Hemolytic anemia

e Other forms of anemia
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Simple rules for anaemia classification
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When not to use machine learning

. New cases not similar enough to any of the training examples — failure to

generalize

. Similar inputs associated with different outputs

. Defined outcomes are controversial because of an ill-defined gold standard

. Insufficient infrastructure or resources (data scientists) for machine learning
. Unreliable outcome labelling, lack of in-house expertise to provide training

diagnoses.

. Traditional rule-based software methods are equivalent/better (simple or well->

characterized problem)
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Feature importance analysis

met 02
met_16-
met_141
met_19-
met_18
met_06-
met 011
met_171
met 21{ e
met 207 e

0.000

0.005 0.010 0.015
Importance

examination with interpretability methods

Purpie features push the risk higher Base value Hypoxaemia fold-risk
0.125 025 0.5 1 2 24 4 8
Su icholine | Peak pressure | SpO, | Tidal volume | Heightiweight | Puls
—_—

Feature impact



Reliable ML models with reproducible results

Recommendation 13: Interpret the results and
performance of the selected model using suitable
global and/or local interpretability methods. Address
performance and potential harms in relevant subgroups

and clinical scenarios.




Reliable ML models with reproducible results

Data

Interpretability,
(knowledge)




Clinical settings are dynamic environments
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Implementation adjusted to clinical settings
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Canari

Cannabis plant health analysis based on leaf

imagery

Version No.1 VIEW DET/

MobileNetV2

MobileNetV2 is a Convolutional networks
(ConvNets) in visual recognition
developped by Google Inc. in 2018
(References: https://arxiv.org/abs/
1801.04381). MobileNet has been trained

on the ImageNet 1| SVRC-2017 thttn//

Version No.1 VIEW DET/

Rock Identification

This model identifies rock hand samples
between the three main rock types
(sedimentary, igneous and metamorphic).
There is a fourth identification category,
"unknown," where minerals, opals, agates

and nther nan-rnck nhiects are classified

Version No.1 VIEW DETA

MobileNet

MobileNet is a Convolutional networks
(ConvNets) in visual recognition
developped by Google Inc. in 2017
(References: https://arxiv.org/abs/
1704.04861v1). MobileNet has been

trained on the ImageNet | SVRC-2012

Version No.1 EW DETAI

VGGI9

VGG19 is a Convolutional networks
(ConvNets) in visual recognition
developped by the Visual Geometry Group
(VGG) of the University of Oxford in 2014
(References: https://arxiv.org/abs/

1409 155A) VGG19 has heen trained nn

Version No.1 EW

DenseNet201
DenseNet201 is a Convolutional networks
(ConvNets) in visual recognition
developped by Cornell University, Tsinghua
University, and Facebook Al Research in
2016 (References: https://arxiv.org/abs/

1A0R NRAAR) NenseNetIN1 has heen

Version No.1 EW DET,

ResNet50
ResNet50 is a Convolutional networks
(ConvNets) in visual recognition
developped by Microsoft Research team in
2015 (References: https://arxiv.org/abs/
1512.03385). ResNet50 has been trained

an the ImageNet 1| SVRC-2015 thitn://

Version No.1 EW DE

InceptionV3
InceptionV3 is a Convolutional networks
(ConvNets) in visual recognition
developped by Google Inc. in 2015
(References: https://arxiv.org/abs/
1512.00567). InceptionV3 has been trained

on the ImageNet 1| SVRC-2017 thttn//

Version No.1 Ew

NASNetMobile

NASNetMobile is a Convolutional networks
(ConvNets) in visual recognition
developped by Google Inc. in 2017
(References: https:/arxiv.org/abs/
1707.07012). MobileNet has been trained

on the ImageNet || SVRC-2017 thttne//

Version No.1

InceptionResNetV2

InceptionResNetV2 is a Convolutional
networks (ConvNets) in visual recognition
developped by Google Inc. in 2016
(References: https://arxiv.org/abs/
1602.07261). InceptionResNetV2 has been

trained an the ImaseNet Il SVRC-2012

Version No.1 EW DETA

NASNetLarge

NASNetLarge is a Convolutional networks
(ConvNets) in visual recognition
developped by Google Inc. in 2017
(References: https://arxiv.org/abs/
1707.07012). MobileNet has been trained

on the ImageNet || SVRC-2017 (httn//

Version No.1 VIEW DETAILS

Xception
Xception is a Convolutional networks
(ConvNets) in visual recognition
developped by Francois Chollet from
Google Inc. in 2016 (References: https://
arxiv.org/abs/1610.02357). Xception has

heen trained on the ImageNet I| SVRC-2014

Version No.1 i DTS
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A WUSM B WCM C MDA
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“This difference could be partially attributed to the fact that both WUSM and MDA laboratories
use the same analyzers to conduct routine chemistry tests [...]”
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Traceable and stable measurements

prevent model deterioration
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Take home lessons

Keep it simple: Only use Machine Learning when you have to.
Beware of data leakage!

Machine Learning is no “magic bullet”: Insufficient data (quantity
and quality) cannot lead to convincing results.

Play to your strengths: Use interpretability methods to evaluate
machine learning models.

Only stable, traceable measurements can guarantee stable,
transferable ML models.
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Resources

690-695 2033, " Special Report

@®

Machine Learning in Laboratory Medicine:
Recommendations of the IFCC Working Group

Stephen R. Master 2aba Tony C. Badrick,“ Andreas Bietenbeck 4 and Shannon Haymonde'f'*

* https://area9lyceum.com/laboratorymedicine/ (ﬁﬁmmedgg f‘g‘gﬁ“ng Lab

MACHINE LEARNING (ADVANCED)

* |FCC Webinar part 2

* |ab@bietenbeck.net




For further information, visit
www.ifcc.org | eacademy.ifcc.org
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